TET1 is a maintenance DNA demethylase that prevents methylation spreading in differentiated cells
نویسندگان
چکیده
TET1 is a 5-methylcytosine dioxygenase and its DNA demethylating activity has been implicated in pluripotency and reprogramming. However, the precise role of TET1 in DNA methylation regulation outside of developmental reprogramming is still unclear. Here, we show that overexpression of the TET1 catalytic domain but not full length TET1 (TET1-FL) induces massive global DNA demethylation in differentiated cells. Genome-wide mapping reveals that 5-hydroxymethylcytosine production by TET1-FL is inhibited as DNA methylation increases, which can be explained by the preferential binding of TET1-FL to unmethylated CpG islands (CGIs) through its CXXC domain. TET1-FL specifically accumulates 5-hydroxymethylcytosine at the edges of hypomethylated CGIs, while knockdown of endogenous TET1 induces methylation spreading from methylated edges into hypomethylated CGIs. We also found that gene expression changes after TET1-FL overexpression are relatively small and independent of its dioxygenase function. Thus, our results identify TET1 as a maintenance DNA demethylase that does not purposely decrease methylation levels, but specifically prevents aberrant methylation spreading into CGIs in differentiated cells.
منابع مشابه
Epigenetic inactivation of the CpG demethylase TET1 as a DNA methylation feedback loop in human cancers
Promoter CpG methylation is a fundamental regulatory process of gene expression. TET proteins are active CpG demethylases converting 5-methylcytosine to 5-hydroxymethylcytosine, with loss of 5 hmC as an epigenetic hallmark of cancers, indicating critical roles of TET proteins in epigenetic tumorigenesis. Through analysis of tumor methylomes, we discovered TET1 as a methylated target, and furthe...
متن کاملInteraction of DNA demethylase and histone methyltransferase upregulates Nrf2 in 5-fluorouracil-resistant colon cancer cells
We recently reported that DNA demethylase ten-eleven translocation 1 (TET1) upregulates nuclear factor erythroid 2-related factor 2 (Nrf2) in 5-fluorouracil-resistant colon cancer cells (SNUC5/5-FUR). In the present study, we examined the effect of histone modifications on Nrf2 transcriptional activation. Histone deacetylase (HDAC) and histone acetyltransferase (HAT) were respectively decreased...
متن کاملThe Modification of Tet1 in Male Germline Stem Cells and Interact with PCNA, HDAC1 to promote their Self-renewal and Proliferation
Epigenetic modification plays key roles in spermatogenesis, especially DNA methylation dynamic is important in sustaining normal spermatogenesis. Ten-eleven translocation 1 (Tet1) is not only a key demethylase, which works in specific gene regions, but also crosstalks with partners to regulate epigenetic progress as protein complexes. Dairy goat is an important livestock in China, while the uns...
متن کاملTET1 modulates H4K16 acetylation by controlling auto-acetylation of hMOF to affect gene regulation and DNA repair function
The Ten Eleven Translocation 1 (TET1) protein is a DNA demethylase that regulates gene expression through altering statue of DNA methylation. However, recent studies have demonstrated that TET1 could modulate transcriptional expression independent of its DNA demethylation activity; yet, the detailed mechanisms underlying TET1's role in such transcriptional regulation remain not well understood....
متن کاملGene Expression and Promoter Methylation Status of VHL, Runx-3, E-cadherin, P15 and P16 Genes During EPO-Mediated Erythroid Differentiation of CD34+ Hematopoietic Stem Cells
Background: VHL (von Hippel-Lindau), Runx-3 (Runt-related transcription factor 3), E-cadherin (Epithelial cadherin), P15 (INK4a, cyclin dependent kinase inhibitor), and P16 (INK4b) genes are essential in hematopoiesis. The aim of this study was to explore the correlation between gene expression and promoter methylation in CD34+ stem cells before and after differentiation to erythroid lineage. M...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 42 شماره
صفحات -
تاریخ انتشار 2014